3.307 \(\int (g x)^m (d+e x)^2 (d^2-e^2 x^2)^p \, dx\)

Optimal. Leaf size=206 \[ \frac{2 d e (g x)^{m+2} \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{m+2}{2},-p;\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )}{g^2 (m+2)}+\frac{2 d^2 (m+p+2) (g x)^{m+1} \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{g (m+1) (m+2 p+3)}-\frac{(g x)^{m+1} \left (d^2-e^2 x^2\right )^{p+1}}{g (m+2 p+3)} \]

[Out]

-(((g*x)^(1 + m)*(d^2 - e^2*x^2)^(1 + p))/(g*(3 + m + 2*p))) + (2*d^2*(2 + m + p)*(g*x)^(1 + m)*(d^2 - e^2*x^2
)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m)*(3 + m + 2*p)*(1 - (e^2*x^2)/d^2)^p
) + (2*d*e*(g*x)^(2 + m)*(d^2 - e^2*x^2)^p*Hypergeometric2F1[(2 + m)/2, -p, (4 + m)/2, (e^2*x^2)/d^2])/(g^2*(2
 + m)*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.168222, antiderivative size = 206, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {1809, 808, 365, 364} \[ \frac{2 d e (g x)^{m+2} \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{m+2}{2},-p;\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )}{g^2 (m+2)}+\frac{2 d^2 (m+p+2) (g x)^{m+1} \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{g (m+1) (m+2 p+3)}-\frac{(g x)^{m+1} \left (d^2-e^2 x^2\right )^{p+1}}{g (m+2 p+3)} \]

Antiderivative was successfully verified.

[In]

Int[(g*x)^m*(d + e*x)^2*(d^2 - e^2*x^2)^p,x]

[Out]

-(((g*x)^(1 + m)*(d^2 - e^2*x^2)^(1 + p))/(g*(3 + m + 2*p))) + (2*d^2*(2 + m + p)*(g*x)^(1 + m)*(d^2 - e^2*x^2
)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m)*(3 + m + 2*p)*(1 - (e^2*x^2)/d^2)^p
) + (2*d*e*(g*x)^(2 + m)*(d^2 - e^2*x^2)^p*Hypergeometric2F1[(2 + m)/2, -p, (4 + m)/2, (e^2*x^2)/d^2])/(g^2*(2
 + m)*(1 - (e^2*x^2)/d^2)^p)

Rule 1809

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[(f*(c*x)^(m + q - 1)*(a + b*x^2)^(p + 1))/(b*c^(q - 1)*(m + q + 2*p + 1)), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rule 808

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int (g x)^m (d+e x)^2 \left (d^2-e^2 x^2\right )^p \, dx &=-\frac{(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}-\frac{\int (g x)^m \left (-2 d^2 e^2 (2+m+p)-2 d e^3 (3+m+2 p) x\right ) \left (d^2-e^2 x^2\right )^p \, dx}{e^2 (3+m+2 p)}\\ &=-\frac{(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}+\frac{(2 d e) \int (g x)^{1+m} \left (d^2-e^2 x^2\right )^p \, dx}{g}+\frac{\left (2 d^2 (2+m+p)\right ) \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx}{3+m+2 p}\\ &=-\frac{(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}+\frac{\left (2 d e \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p}\right ) \int (g x)^{1+m} \left (1-\frac{e^2 x^2}{d^2}\right )^p \, dx}{g}+\frac{\left (2 d^2 (2+m+p) \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p}\right ) \int (g x)^m \left (1-\frac{e^2 x^2}{d^2}\right )^p \, dx}{3+m+2 p}\\ &=-\frac{(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}+\frac{2 d^2 (2+m+p) (g x)^{1+m} \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{1+m}{2},-p;\frac{3+m}{2};\frac{e^2 x^2}{d^2}\right )}{g (1+m) (3+m+2 p)}+\frac{2 d e (g x)^{2+m} \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{2+m}{2},-p;\frac{4+m}{2};\frac{e^2 x^2}{d^2}\right )}{g^2 (2+m)}\\ \end{align*}

Mathematica [A]  time = 0.0942459, size = 169, normalized size = 0.82 \[ \frac{x (g x)^m \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \left (d^2 \left (m^2+5 m+6\right ) \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )+e (m+1) x \left (2 d (m+3) \, _2F_1\left (\frac{m+2}{2},-p;\frac{m+4}{2};\frac{e^2 x^2}{d^2}\right )+e (m+2) x \, _2F_1\left (\frac{m+3}{2},-p;\frac{m+5}{2};\frac{e^2 x^2}{d^2}\right )\right )\right )}{(m+1) (m+2) (m+3)} \]

Antiderivative was successfully verified.

[In]

Integrate[(g*x)^m*(d + e*x)^2*(d^2 - e^2*x^2)^p,x]

[Out]

(x*(g*x)^m*(d^2 - e^2*x^2)^p*(d^2*(6 + 5*m + m^2)*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, (e^2*x^2)/d^2] +
 e*(1 + m)*x*(2*d*(3 + m)*Hypergeometric2F1[(2 + m)/2, -p, (4 + m)/2, (e^2*x^2)/d^2] + e*(2 + m)*x*Hypergeomet
ric2F1[(3 + m)/2, -p, (5 + m)/2, (e^2*x^2)/d^2])))/((1 + m)*(2 + m)*(3 + m)*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Maple [F]  time = 0.639, size = 0, normalized size = 0. \begin{align*} \int \left ( gx \right ) ^{m} \left ( ex+d \right ) ^{2} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x)

[Out]

int((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{2}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} \left (g x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="maxima")

[Out]

integrate((e*x + d)^2*(-e^2*x^2 + d^2)^p*(g*x)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} \left (g x\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="fricas")

[Out]

integral((e^2*x^2 + 2*d*e*x + d^2)*(-e^2*x^2 + d^2)^p*(g*x)^m, x)

________________________________________________________________________________________

Sympy [C]  time = 33.3851, size = 192, normalized size = 0.93 \begin{align*} \frac{d^{2} d^{2 p} g^{m} x x^{m} \Gamma \left (\frac{m}{2} + \frac{1}{2}\right ){{}_{2}F_{1}\left (\begin{matrix} - p, \frac{m}{2} + \frac{1}{2} \\ \frac{m}{2} + \frac{3}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} + \frac{d d^{2 p} e g^{m} x^{2} x^{m} \Gamma \left (\frac{m}{2} + 1\right ){{}_{2}F_{1}\left (\begin{matrix} - p, \frac{m}{2} + 1 \\ \frac{m}{2} + 2 \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{\Gamma \left (\frac{m}{2} + 2\right )} + \frac{d^{2 p} e^{2} g^{m} x^{3} x^{m} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right ){{}_{2}F_{1}\left (\begin{matrix} - p, \frac{m}{2} + \frac{3}{2} \\ \frac{m}{2} + \frac{5}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac{m}{2} + \frac{5}{2}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)**m*(e*x+d)**2*(-e**2*x**2+d**2)**p,x)

[Out]

d**2*d**(2*p)*g**m*x*x**m*gamma(m/2 + 1/2)*hyper((-p, m/2 + 1/2), (m/2 + 3/2,), e**2*x**2*exp_polar(2*I*pi)/d*
*2)/(2*gamma(m/2 + 3/2)) + d*d**(2*p)*e*g**m*x**2*x**m*gamma(m/2 + 1)*hyper((-p, m/2 + 1), (m/2 + 2,), e**2*x*
*2*exp_polar(2*I*pi)/d**2)/gamma(m/2 + 2) + d**(2*p)*e**2*g**m*x**3*x**m*gamma(m/2 + 3/2)*hyper((-p, m/2 + 3/2
), (m/2 + 5/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*gamma(m/2 + 5/2))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{2}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} \left (g x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="giac")

[Out]

integrate((e*x + d)^2*(-e^2*x^2 + d^2)^p*(g*x)^m, x)